On singular univariate specializations of bivariate hypergeometric functions

نویسنده

  • Raimundas Vidūnas
چکیده

Abstract It is tempting to evaluate F2(x, 1) and similar univariate specializations of Appell’s functions by evaluating the apparent power series at x = 0 straight away using the Gauss formula for 2F1(1). But this kind of naive evaluation can lead to errors as the 2F1(1) coefficients might eventually diverge; then the actual power series at x = 0 might involve branching terms. This paper demonstrates these complications on concrete examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bivariate Gamma-type Probability Function Using a Confluent Hypergeometric Function of Two Variables

Al-Saqabi et al. [4] defined a univariate gamma-type function involving the confluent hypergeometirc function of two variables and discussed some associated statistical functions. We define a bivariate extension of their gamma-type function using another form of a confluent hypergeometric function of two variables and discuss some of its statistical functions.

متن کامل

The Structure of Multivariate Hypergeometric Terms

The structure of multivariate hypergeometric terms is studied. This leads to a proof of (a special case of) a conjecture formulated by Wilf and Zeilberger in 1992. A function u(n1, . . . , nd) with values in a field K is called a hypergeometric term if there exist rational functions Ri ∈ K(n1, . . . , nd), i = 1, . . . , d, such that u is solution of a system of d firstorder recurrences Si · u ...

متن کامل

The Existence of Telescopers for Hyperexponential-Hypergeometric Functions

We present two criteria for the existence of telescopers for bivariate hyperexponential-hypergeometric functions. One is for the existence of telescopers with respect to the continuous variable, the other for telescopers with respect to the discrete one. Our criteria are based on a standard representations of bivariate hyperexponentialhypergeometric functions, and two additive decompositions.

متن کامل

The Structure of Bivariate Rational Hypergeometric Functions

We describe the structure of all codimension-two lattice configurations A which admit a stable rational A-hypergeometric function, that is a rational function F all whose partial derivatives are non zero, and which is a solution of the A-hypergeometric system of partial differential equations defined by Gel’fand, Kapranov and Zelevinsky. We show, moreover, that all stable rational A-hypergeomet...

متن کامل

A Subclass of Analytic Functions Associated with Hypergeometric Functions

In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc $mathcal{U}$. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009